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Spain. 

(Received 7 March 1991) 

In this work we have used Enskog theory to evaluate transport properties in d-dimensional hard spheres. 
In order to carry out this study we have made use of the relation between the compressibility factor Z 
and the ratio XE/Xo,  where X ,  is the Enskog value for a transport property and X ,  is that corresponding 
to a dilute gas. From the available numerical data for Z in simulation experiences, we have calculated 
the aforementioned ratio for the diffusion coefficient D, the shear viscosity coefficient q. the bulk viscosity 
coefficient @ and the thermal conductivity coefficient 1. This calculation has been extended to hard disks 
(d = 2),  hard spheres (d  = 3) and hard hyperspheres (d = 43) in the maximum allowable range of densities. 
We have also tested the suitability of some algebraic equations of state proposed for such bodies by 
comparing their respective values for X,lXo.  Finally, we have obtained numerical values for the ratio 
D/DE in the cases d = 4,5. The behavior i s  similar to that of hard spheres. 

KEY WORDS: Transport properties, Enskog’s theory, hard spheres, compressibility factor. 

I INTRODUCTION 

The significant progress that has been made in the knowledge of the equilibrium 
properties is due mainly to the existence of a virial expansion for the equation of 
state (EOS). Unfortunately, the same thing cannot be done in the case of the transport 
properties. On the basis of the work of Bogoliubov’ and Uhlenbeck, quoted by 
Cohen’, the impossibility of such an expansion was recognized by the mid 1960s. 
However, the coefficient of the logarithmic term, which impedes the expansion of 
transport coefficients in power series of the density, is sometimes very small3, which 
has originated some ambiguity. 

The Enskog theory arises from the Boltzmann equation by taking into considera- 
tion two main features: a) the frequency of collisions in a dense system is greater 
than in a dilute gas; b) collisional transfer of flux can be more important than 
molecular transfer. However, the Enskog theory is not completely rigorous because 
the presence of correlations is not considered. In spite of this limitation, the Enskog 
theory is the best description in the context of the kinetic theory of dense gases and 
its final formulation is very simple. Furthermore, this is the only theory, except for 
some others clearly inspired by it4s5, which establishes a reciprocal relation between 
transport and equilibrium properties in the framework of hard spheres. This feature 
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makes it possible to use the abundant information concerning these properties. The 
present work has been performed with this purpose in mind. 

At present, simulation methods provide an alternative procedure for determining 
the transport properties. This procedure can be used to test the Enskog theory by 
evaluating the relation X / X E  at all possible densities. The diffusion coefficient is the 
most frequently used quantity for very good reasons6" but there are also good 
motives for employing the other proper tie^**^. 

The rest of the paper is organized as follows. Section I1 summarizes the Enskog 
theory for hard-sphere systems and provides numerical results for XE/Xo  calculated 
from the compressibility factor 2 by using the simulation values and those from an 
analytical equation of state. In Section 111, we have tackled the case of four- and 
five-dimensional hard hyperspheres, calculating the ratio DID, from the few simula- 
tion data available. Finally, we have discussed the variation of DID, with the 
numerical density. 

I1 HARD SPHERES 

The Enskog theory expresses the values of the four basic transport properties with 
respect to those of the dilute gas"." in the form: 

qE/qo = (l/g(g)I + 0.8(b/V) + 0.761g(0)(b/V)~ (2) 

where g(a), b and Vare the radial distribution function, the covolume and the volume, 
respectively. 

Introducing the numerical density of particles n, the hard sphere diameter 6, the 
reduced density n* = na3 and the compressibility factor Z,  one finds 

D E / D O  = 2nn*/3(Z - 1) ( 5 )  

q E / q O  = (21~/3)n*((l/Z - 1) + 0.8 + 0.761(Z - 1)) (6) 

(PE/q0 = (2~/3)n*1.002(2 = I )  (7) 

i E / j v o  = (2n/3)n*((l/Z - 1) + 1.2 + 0.755(2 - 1)) (8) 

The derivation is omitted because these results are included in standard texts on 
statistical mechanics12. For this reason, we do not present a table with detailed data. 

A commonly used procedure consists in comparing the results of a proposed EOS 
with the simulation predictions for the compressibility factor Z. In the context of 
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hard spheres, such predictions were pioneered by Alder and Wainwright 1 3 .  This 
method has now been extended to systems with thousands of particles for the stable 
fluid region14, and even to the metastable fluid and glassy r e g i ~ n s ' ~ ,  although with 
fewer statistics. 

Alternatively, many attempts have been made to obtain an analytical EOS for 
hard spheres. Unquestionably, the Carnahan-Starling equationI6 is the best known. 
In an earlier work17, we proposed a semiempirical EOS and tested it against the 
simulation data. The agreement was found to be very good. As is usual, the parameter 
chosen for the comparison was the compressibility factor Z .  However, since Z is 
always greater than one, the comparison can be made more instructive by introducing 
a function of the parameter Z - 1. This provides a more severe test in the range 
where 2 approaches unity (i.e. in the low-density range). 

The results obtained have been completely gratifying in the whole range of the 
stable and metastable fluid. In fact, the quantitative agreement remains good well 
into the glassy region in spite of the fact that there are no conceptual grounds for 
applying an EOS for the fluid state to the amorphous state. For example, the relative 
deviation of the four transport properties is still less than 30% when n* = 1.16, which 
corresponds to more than half of the glassy region. 

111 HARD DISKS 

The formulation of the problem needs only slight modifications with respect to the 
preceding case. The theory has been developed by Alder and Wainwright" and in 
greater depth by Gasslg. Their analytical form is: 

where Do,  qo and io are again the quantities corresponding to the dilute gas. Here 

b = (1/2)Nno2; b/A = (n/2)no2 = (n/2)n* (13) 

with n* = no2, the reduced density. 
The EOS is2' 

P/nkT = 1 + (1/2)no2ng(o) 

Now the radial distribution function is: 

g(o) = (2/no2n)((P/nkT) - 1) = (2/nn*)(Z - 1) 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
2
6
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



58 

So then 

J. AMOROS, M. J. MAESO AND E. VILLAR 

D,/D,, = m*/2(Z - 1) (16) 

qE/qO = (xi2)n*((l/Z - 1) + 1 + 0.8729(2 - 1)) (17) 

j .E'j .0 = (n/2)n*((l/Z - 1) + 312 + 0.8718(Z - 1)) (19) 

In this dimensionality, the Enskog theory has additional importance because the 
transport coefficients are Therefore, some a u t h o r ~ ' ' . ~ ~  have 
adopted the Enskog value as the representative result. 

The values of Z have been obtained from the simulation data of Erpenbeck and 
LubanZ4. Alternatively, values have been used that were obtained from the EOS 
which we proposed in an earlier work". In  this case, only values from the stable 
fluid region were employed. The agreement between the two values is excellent, as 
one can see in Table 1. 

IV FOUR AND FIVE-DIMENSIONAL HARD HYPERSPHERES 

To our knowledge, the Enskog theory has not been developed for a dimensionality 
greater than three. Erpenbeck and WoodZS attempted to generalize the theory for 
arbitrary dimensionality but their development was limited to two cases (d = 2,3) 
and to the diffusion coefficient. Recently, Bishop, Michels and de Schepper26 applied 
the formalism to other dimensionalities in order to describe the short-time behavior 
of the velocity autocorrelation function. From these findings and the structure of the 
Enskog theory itself, it seems very reasonable to suggest that the expressions (1) and 
(9) can be extrapolated to any dimensionality. Based on this assumption, we have 
developed the relationship with the compressibility factor Z. 

Table 1 Ratio of the Enskog theory values to dilute gas values ( X E / X O )  with the reduced density n* for 
the following transport properties of a hard disk fluid: a) the diffusion coefficient D ;  b) the shear viscosity 
1; c) the bulk viscosity Q, and d)  the thermal conductivity E.. The subscripts sim. and calc. indicate whether 
the compressibility factor values are from simulation data or calculated from an analytical equation of state. 

n* 0.0385 0.0574 0.1 155 0.2309 0.3849 0.5774 0.6415 0.7217 0.7698 0.8248 

0.9541 
0.9541 
1.018 
1.018 
0.0048 
0.0048 
1.048 
1.048 

0.9261 0.861 1 
0.9261 0.8611 
1.024 1.076 
1.024 1.076 
0.01 10 0.0476 
0.01 10 0.0476 
1.069 1.167 
1.069 1.167 

0.7279 
0.7277 
1.248 
1.248 
0.2252 
0.2252 
1.429 
1.429 

0.5613 
0.5612 
1.734 
1.734 
0.8114 
0.8116 
2.036 
2.036 

0.3177 0.3177 0.2521 
0.3739 0.3176 0.2522 
3.200 4.115 5.838 
3.201 4.116 5.833 
2.740 3.982 6.351 
2.741 3.983 6.348 
3.651 4.615 6.396 
3.652 4.616 6.394 

0.21 56 
0.2159 
7.344 
7.337 
8.449 
8.438 
7.941 
7.934 

0.1773 
0.1772 
9.735 
9.741 

11.79 
11.80 
10.37 
10.38 
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TRANSPORT PROPERTIES IN &DIMENSIONS 59 

The compressibility factor and the radial distribution function are related through 
the half volume of the d-dimensional sphere. Then, for the four-dimensional hard 
hypersphere: 

Z = P/nkT = 1 + (7c2/4)a4ng(a); n* = no4; g(a) = (4/7c2n*)(Z - 1) (20) 

and for the five-dimensional hard hypersphere: 

2 = P/nkT = 1 + (47c2/15)na5g(a); n* = no5; g(a) = (15/4n2n)(Z - 1) (22) 

DElD, = 4rc2n*/15(Z - 1) (23) 

The variation with Z - 1 can be seen, which is characteristic of Enskog theory. 
Here the values of Z have been obtained from the simulation data of Michels and 
T r a ~ p e n i e r s ~ ~  and from an EOS suggested by us2*. Again the agreement is very good 
as is shown in Table 2. 

Since the pioneering work of Alder, Gass and Wainwright29 in three dimensions, 
the determination of the transport properties by means of molecular dynamics 
simulation has become widespread. The available data have been used to test the 
Enskog theory by means of the relation X / X E .  Particularly, major efforts have been 
addressed to the diffusion coefficient. 

At low densities, the computed value of D is higher than prediction whereas at 
high densities, it is lower because of the existence of the backscattering effect3'. 

The variation of the ratio DID, in three dimensions with the reduced density n* 
has been studied exhaustively in the literature. A recent data compilation has been 
published by Speedy3 '. 

Surprisingly, we have not found any information on this quantity in other 

Table 2 
coefficient. 

As in Table 1 for four- and five-dimensional hard hypersphere fluid but only for the diffusion 

n* d = 4  

0.20 0.40 0.60 0.80 0.90 0.95 1 .oo 

(DE/DO)rim, 0.7747 0.5910 0.4439 0.3269 0.2792 0.2563 0.2359 
(DE/DO)cals. 0,7747 0.5921 0.4443 0.3284 0.2792 0.2567 0.2355 

d = 5  

n* 0.20 0.40 0.60 0.80 1 .oo 1.10 1.15 1.18 

(DE/Do)sim, 0,8061 0.6482 0.5250 0.4214 0.3397 0.3040 0.2858 0.2769 
(DE/DO)calc, 0.8061 0.6507 0.5246 0.4223 0.3389 0.3032 0.2866 0.2771 
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Table 3 Variation in the ratio D:D,, the diffusion coefficient given by molecular dynamics simulation 
over that corresponding to the Enskog theoi-y, for four- and five-dimensional hard hyperspheres with the 
reduced density n*. 

~ 

d = 4  

n* 0.20 0.40 0.60 0.80 0.90 0.95 1.00 

DID, 1.0638 1.1382 1.1590 1.0111 0.8851 0.8133 0.7080 

d = 5  

fl* 0.20 0.40 0.60 0.80 1 .oo 1.10 1.15 1.18 
~~ 

D D, 1.0478 10855 1.1065 1.0533 0.9197 0.8038 0.7289 0.6961 

dimensionalities in spite of the fact that some  author^^^.^' have the suitable means 
available. Consequently, we have calculated the quotient DID, versus the reduced 
density n* for d = 4,5. Previously. we checked the reliability of the method by 
comparing it with the considerable predictions available for d = 3. 

The simultaneous consideration of values corresponding to d = 3,4,5 makes it 
possible to observe how the dimensionality affects DID, (Table 3) .  The ratio DID, 
rises at low reduced densities for all dimensionalities, but this effect is minimized as 
the dimensionality increases. This is probably due to variation in the degree of 
packing with dimensionality. In fact, compact close packing is reached for n* = 
2/(3)"2, 2'12, 2 and 2(2)',' when d = 2,3,4,5 respectively. In other words, for the same 
value of n*, the overcrowding is greater at low dimensionalities. 

In addition, the observed decrease of DID, at high reduced density is smoother 
for the higher dimensionalities. This behavior can also be explained in terms of 
packing effects. 

At  higher densities, the particles surrounding any one particle are more densely 
packed. The major effect of these neighbors is to reflect the particles, leading to the 
negative contribution discussed in terms of ba~ksca t t e r ing~~ .  
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